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Abstract

Public blockchains like Bitcoin and Ethereum can be seen as self-replicating machines, organ-
isms that leverage economic incentives to encourage human participation in their operation and
expansion. This paper explores the potential integration of artificial intelligence into these systems,
enabling the creation of autonomous economic agents. We propose a novel consensus architecture
for a layer-one blockchain designed to embed secure AI computation while minimizing trust as-
sumptions and computational overhead. This secure computing framework, built on the Optimistic
Proof of Computation (OPoC) consensus algorithm, enables reliable interactions between smart
contracts and AI inferences, facilitating the development of self-sustaining AI economic agents.
These entities are represented as NFTs, possessing the capability to transact crypto-assets au-
tonomously on any blockchain, and cover their own computational expenses. By leveraging the
OPoC consensus, we ensure robust security and economic incentives, fostering a new generation
of blockchain-integrated AI systems.

1 Introduction

Since the release of ”Attention is All You Need” [VSP+17], the seminal paper introducing the trans-
former architecture, there has been an unprecedented advancement in the capabilities of large language
models (LLMs). The launch of Instruct LLMs, such as ChatGPT, further highlighted the power of
LLMs by aligning their text generation capabilities with human preferences. LLMs have now reached
a point where they can pass the Turing Test [Nat23], which was once considered the ultimate measure
of intelligence. However, the efficacy of this test in distinguishing true intelligence has been widely
questioned [Cho19] in recent years. On one hand, critics describe LLMs as merely ”statistical parrots”
— sophisticated statistical machines that will never achieve human-level intelligence. On the other
hand, the undeniable utility of their output, which generates significant economic value, is evidenced
by the revenues of companies like OpenAI, Google, and Anthropic.

With UOMI Network, we introduce a new dimension to AI systems evaluation: the ability to
be economically self-sufficient. Recent research [POC+23], including efforts by Stanford and Google
DeepMind, has demonstrated that LLM-powered agents can plan, share news, form relationships, and
coordinate activities, showcasing general reasoning capabilities. Moreover, open-source frameworks like
BabyAGI [Nak24] and Auto-GPT [Sig24] have facilitated rapid prototyping of complex agents incor-
porating memory and Retrieval-Augmented Generation (RAG) modules. Despite these advancements,
existing agents remain confined to simulated environments and lack real-world economic agency.

In this paper, we propose a layer one architecture powered by the combination of POS and OPoC
consensus algorithms that enables on-chain secure and efficient AI computation and, thus, the creation
of AI agents with genuine economic agency, potentially leading to self-sustainability. We rely on a
very broad definition of agents that embraces all of the applications of secure computation, such as
AI Oracles, AI-governed DAOs, AI Companions, and even simple trading bots. The AI agents are
represented as ERC-721 NFTs on arbitrary EVM-compatible blockchains. Each AI agent NFT can
own and transact digital assets through the Token Bound Standard ERC-6551 [erc24]. To enable
intelligent and economically independent agents, we integrate three core primitives:

• A decentralized computation framework for secure inferences powered by OPoC consensus
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• A decentralized transaction signing mechanism made possible by ECDSA Threshold Signature
Scheme

• A covenant-enforcing system that facilitates payment-conditioned inferences and services

While these primitives are tailored for the Web3 space, our architecture also supports Web2 interactions
through standard authentication protocols based on Web3 signing schemes.

2 Optimistic Proof of Computation (OPoC): a compute effi-
cient protocol for secure decentralized AI

The goal of the OPoC consensus algorithm is to enable smart contracts to trust general AI computa-
tions, ensuring that a specific model has been executed correctly on a specific input. This capability
enables the creation of autonomous economic agents that can interact with smart contracts and thus
transact value. Running large language models (LLMs) and machine learning (ML) models, in general,
is a demanding computational task. The development of a decentralized consensus mechanism that can
ensure the correct execution of such computations is a complex challenge. It requires a delicate bal-
ance between latency, computational overhead, and correctness guarantees. Traditionally, blockchain
consensus methods require that all network participants verify whether state changes—such as balance
adjustments or unspent transaction outputs—comply with the protocol-defined rules, and whether the
block proposer has either performed significant computational work (Proof of Work, PoW) [Nak08]
or holds a substantial stake in the network (Proof of Stake, PoS)[KN12][BG17]. While theoretically
possible, applying traditional consensus logic to the computation of LLMs and ML models would be
practically infeasible due to the significant computational and data availability costs involved, which
would scale linearly with the number of nodes participating in the consensus. A possible approach to
solve such a problem is to generate an easily verifiable proof that the computation has been executed
correctly. Just like in proof-of-work all of the network participants can easily verify that the SHA-256
hash of a nonce combined with all the transactions included in a block - treated as a 256-bit integer -
is less than a dynamically adjusted target, in our case, a similar verification process could be achieved
by using a Zero Knowledge Proof system. Network participants could easily verify that an output y
is the direct result of the execution of a specific AI model f() on an input x without having to re-run
the whole computation f(x) = y but only by validating a ZK-SNARK proof. Although theoretically
feasible, also this approach currently faces practical limitations that prevent its application in scenar-
ios requiring intense computation, such as with LLMs, or where latency constraints demand responses
within seconds. Such a limitation is well understood in the cryptocurrency space, in a recent article
[But24], Vitalik Buterin has categorized it as ”Cryptographic overhead”. Currently, generating a ZK-
SNARK proof for even a modestly sized LLM, with just 1 million parameters, takes approximately
1000 seconds [SCJ+24][ezk23]. This is significant, especially considering that lower specification models
in contemporary usage typically feature at least 7 billion parameters. Furthermore, the computational
cost to generate such a proof is two to three orders of magnitude greater than the computation being
verified, with a memory footprint potentially reaching terabytes [Lab23][SCJ+24][Lab24]. OPoC is a
novel consensus algorithm designed to facilitate secure computation within a decentralized computing
framework. This algorithm ensures that for any given computation function f() and input x, there
are robust statistical guarantees that f(x) = y. Importantly, we integrate economic principles into
the algorithm by leveraging token staking, which transforms these statistical assurances into tangible
economic security. This economic security is crucial, as it underpins the integrity of interactions be-
tween AI models and smart contracts, particularly in environments where value is managed and the
incentive to manipulate outcomes is significant due to the stakes involved. Optimized for resource-
intensive computations, our algorithm is particularly adept at handling large language models and
machine learning tasks, thereby enabling secure and reliable interactions between AI technologies and
blockchain-based smart contracts.

2.1 Architecture

To address the practical bottlenecks related to global computation footprint and latency, and to facil-
itate a wide range of secure computation use cases, including the interaction between AI models and

2



smart contracts, we propose a novel consensus algorithm termed Optimistic Proof of Computation
(OPoC). OPoC alleviates the need for all nodes to perform computations for each inference. Instead,
network-wide computation and verification are only triggered if a disagreement occurs among a lim-
ited subset of validators v. These validators are randomly selected [MRV99] from the entire pool of
validators V to perform the inference. The OPoC consensus process is divided into two stages: The
first stage provides probabilistic assurance of the computation’s correctness. Should any disagreements
arise in this initial phase, the second stage offers a resolution mechanism to address such discrepancies.
By convention, we’ll call a validator honest if he/she follows the protocol and byzantine otherwise. We
typically assume strictly less than p = 1/3 of validators are byzantine. This constant can be traced to
Practical Byzantine Fault Tolerance (PBFT) from [CL+99], a classic consensus protocol in byzantine
tolerance literature. In OPoC an actor requiring an inference from the network receives a probabilistic
guarantee of correct computation. This guarantee is equivalent to the probability that at least one
validator in the subset v is honest v(honest) ≥ 1. Conversely, for an attacker to successfully propagate
a malicious inference across the network, it would require that none of the validators in the randomly
chosen subset v are honest. If only one of the v validators is honest, there would be a disagreement
with the rest of the byzantine validators in v, and the consensus would scale to a larger subset of val-
idators in V . Under the assumption of an honest majority, this expanded subset of V can determine
the correct inference. Each validator participating in the network is required to stake an s amount of
tokens with economic value; the tokens of the byzantine validators are subjected to slashing.

Figure 1: OPoC high-level architecture

2.2 Probabilistic guarantees on computation correctness

We can leverage the hypergeometric distribution formula to formally define the probability that a
malicious inference successfully propagates through such an OPoC-enabled network and, thus, the
probability of an attacker succeeding without being slashed.

The probability mass function (PMF) for selecting h honest validators out of v drawn from a total
of V validators, where there are H honest validators, is given by:

P (X = h) =

(
H
h

)
×
(
V−H
v−h

)(
V
v

)
Where:

• P (X = h) is the probability of selecting exactly h honest validators from the subset of v partic-
ipating validators.

•
(
H
h

)
calculates how many ways we can select h honest validators from the total H honest valida-

tors.
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•
(
V−H
v−h

)
calculates how many ways we can fill the remaining slots in our subset with Byzantine

(dishonest) validators, given that we’ve already selected v honest ones.

•
(
V
v

)
is the total number of ways to select any v validators out of the entire pool of V validators,

without concern for whether they’re honest or Byzantine.

In this context, consider a scenario where the consensus algorithm operates under the assumption
that 2/3 of the validators V are honest. If the total number of validators V is 100, and a subset of these,
v, totaling 10 validators, are selected to vote on a computation, the probability of selecting a subset
with zero honest validators (given h = 0 honest validators in this subset) would yield a probability of
0.0000076 .

3 Economic Security

To determine the economic security of each inference produced by the OPoC consensus network, we
need to calculate the minimum reward that a rational Byzantine validator would accept to counterbal-
ance the risk of having its stake s slashed. Assuming no collusion among single defecting validators,
the Minimum Defecting Reward can be calculated as follows:

Reward(defect) =
s

P (X = h)

Where h = 0
As long as the result of an inference generated by the network is directly or indirectly connected to

a value smaller than the defined minimal reward to defect, there is no rational incentive for a validator
to attack the network. Consider a scenario where the stake s is $ 10,000, and the consensus algorithm
operates under the assumption that 2/3 of the validators V are honest. If the total number of validators
V is 100, and a subset of these, v, totaling 10 validators, are selected to vote on a computation, the
economic security for each computation would be approximately $ 1,315,789,473.

3.1 Maximally adversarial environments

To account for a maximally adversarial environment, we reconsider the no collusion assumption among
single defecting validators. We assume a scenario where a single entity controls all of the 1/3 dishonest
validators. In such a scenario, to prevent dishonest validators from avoiding participation in validation
rounds where there is at least one honest validator (h ≥ 1), we should modify the first stage of the
OPoC consensus into two consecutive stages. In T0, one validator performs the computation, while the
rest of the validators in v perform it in T1. Validators are chosen via a random function, ensuring that
the validator selected in T0 cannot predict which validators will be selected in T1. To accommodate
this new validation mechanism, we modify the previously defined PMF as follows:

P (X = h) =

(
H
h

)
×

(
(V−1)−H
(v−1)−h

)(
(V−1)
(v−1)

)
This equation accounts for the subtraction of one dishonest validator from the total set V and the

subset v. Applying the simulation data used for the no collusion scenario to this new formula for the
maximally adversarial environment results in a reduced economic security for each computation to
approximately $ 450,450,450.

This approach allows us to provide flexible probabilistic assurances of the correctness of a required
inference, limiting the computational footprint to a fraction of that required by complete validation
by all network participants. An actor requiring an inference can set the probabilistic assurance based
on the specific use case or value at stake.

Note on Inactivity Leak:
The Minimum Defecting Reward calculation for the maximally adversarial environment does not

account for the economic cost applied through partial slashing to the defecting validators during the
validation rounds they avoid participating in. The Inactivity Leak section describes such an additional
disincentive to misbehave.
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4 OPoC Security and Parallel Inference Scaling

4.1 Security

In terms of scalability, OPoC presents a significant structural advantage compared to traditional PoS
and PoW consensus mechanisms. In both PoS and PoW, the total computational effort required
to verify transactions increases linearly with the number of nodes joining the network. Conversely,
OPoC operates differently: as the number of validating nodes V grows, the algorithm maintains the
same level of statistical assurance on the correctness of the computations without a corresponding
increase in the total computational effort used. This is because the ratio of participating validators
v/V —the proportion of total validators V engaged for each inference—necessary to achieve consistent
probabilistic assurances on the correctness of an inference scales sublinearly with the growth of V .

To elaborate, for a fixed ratio of v/V and a constant proportion of honest validators H/V , the
increase in the overall population V results in an exponential decrease in the probability that v consists
solely of Byzantine validators. This demonstrates the efficiency of OPoC in leveraging larger validator
populations to enhance security without proportional increases in computational demand.

The following are the probabilities of encountering all dishonest validators among the randomly
selected voting validators v, assuming v/V = 3% and H/V = 2/3, calculated across different network
sizes V = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]:

Figure 2: Probability of all byzantine validators in v

As a consequence of this exponential decrease in the probability of having only Byzantine valida-
tors within v, coupled with the linear growth of the population V , we can infer that the percentage of
participating validators v/V necessary to maintain the same level of inference security decreases poly-
nomially with the increase in the total population of validators V . To substantiate this assertion, we
consider the hypergeometric distribution probability mass function (PMF) for the scenario of selecting
exactly zero honest validators within v:

P (all dishonest) =

(
V ·(1−h)

v

)(
V
v

)
To determine how many validators v need to participate in order to achieve a certain Ptarget — the

probability of selecting all dishonest validators — with changes only in the total number of validators
V , we solve the following inequality for v:(

V ·(1−h)
v

)(
V
v

) < Ptarget

This problem can be tackled iteratively by simulating different levels of validator participation
(v/V ) and varying the total count of validators V .
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Figure 3: v/V validators needed for a Ptarget < 10−2 of selecting all dishonest validators in v

The chart demonstrates that with a specific target for P (all dishonest) — in this case, Ptarget < 10−2

— as V increases, v/V can be reduced. This illustrates how the OPoC consensus algorithm scales
parallel computation capability linearly with the number of participating nodes while simultaneously
enhancing network security and decreasing the necessary proportion of validators required to achieve
a given level of security.

4.2 Parallel Inference

Under traditional consensus paradigms such as PoS and PoW, all validators are required to perform
the same computations to validate transactions. This restricts the network’s ability to run parallel
inferences and thus limits the capability to serve multiple agents simultaneously. Furthermore, adding
more validators to such networks does not increase the capacity for producing secure inferences per
unit of time; instead, it merely amplifies the computational overhead required per secure inference.

In contrast, with the OPoC model, as demonstrated in previous sections, for fixed level of security
assurances on the computation, at the growth of the total population of validators V we can main-
tain a fixed number of randomly extracted participating validators v for each inference. This means
that under the assumptions that a) each request fully saturates the computational capability of each
validating node - pessimistic assumption - and b) there is no disagreement between v validators; the
capability of the computation network to perform parallel inferences scales linearly with the growth of
the total validators population V and is equal to V/v.

Number of parallel computations =
V

v

This scaling property is crucial not only for the computational efficiency of the network but also
in terms of the economic sustainability of the consensus algorithm. Specifically, in a computational
network powered by OPoC, adding nodes—which represent costly resources—directly translates into
increased throughput. This, in turn, enhances the network’s capacity to generate revenue. Therefore,
OPoC not only optimizes computational resources but also aligns economic incentives with network
growth and performance.

5 Resolving preliminary consensus disagreement:

5.1 Preliminary Consensus Phase

In the initial phase of the OPoC consensus mechanism, a subset v of the total validator population V
executes the requested computation. If consensus fails during this phase—indicated by at least one
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validator in v disagreeing on the output y of the function f(x)—a method is required to resolve the
disagreement and determine the correct result of y.

5.2 Brute Force Resolution Approach

A straightforward approach to reach consensus on the correct y involves scaling the subset of nodes v
to a size v1 that guarantees a majority of honest nodes, under the global honest majority assumption:

v1 = V × ((1 −H/V ) × 2) + 1

This brute force method is effective in resolving disagreements on the computation result y and is
viable under the assumption that such consensus failures are rare and the s stake of byzantine proposers
can be slashed. However, it is computationally expensive as it requires a significant majority of the
network, v1, to re-run the entire computation.

5.3 Efficient dispute resolution approach

To dramatically reduce this overhead, we implement resolution method inspired by Refereed Delegation
of Computation (RDoC)[CRR13], a method proposed by Canetti, Riva, and Rothblum . RDoC allows
a client to verify the correctness of a computation in the cloud when two servers, one of which is honest,
disagree on the result. The client engages in a protocol with each server, using binary search to identify
inconsistencies between intermediate states of their computations. When an inconsistency is found,
the client can determine the cheater by verifying a single step of the computation. Collision-resistant
hash functions enable servers to commit to the large intermediate states of the computation using
compact commitments.

In our OPoC context, instead of a client and two servers, we have a network V verifying two
different outputs from a computation f(x) performed by a subset v. The dispute resolution process
is not interactive but we require each participant in v to deliver both the final result and hashes of
intermediate states at defined steps of the computation. These validators also temporarily store and, if
a disagreement arises, broadcast the intermediate states to the entire network. Using collision-free hash
functions, the extended subset v1 can efficiently identify at which step the computation diverged and
verify the correctness of the hashes for the inputs and outputs with minimal computational overhead.
Upon detecting a disputed step, the involved nodes must broadcast the contentious input and output
states for v1 to verify the correct state transition.

5.3.1 Computational Cost Analysis

The computational cost of running a complete AI model computation, such as for a large language
model (LLM), is given by:

Cfull = Nlayers × Clayer

Where:

• Cfull represents the total computational cost.

• Nlayers indicates the number of layers in the model.

• Clayer denotes the cost to run a single layer, often determined by matrix operations and activa-
tions.

Clayer = 2 ×Din ×Dout × (Nparams + Nactivations)

For partial computations, such as running a fraction of the model:

Cpartial = k × Clayer

Where k is the fraction of the total computation executed.
The efficiency of computation can be assessed by:
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Refficiency =
Cfull

Cpartial
=

Nlayers

k

In the context of OPoC, ignoring the computational cost for hash comparison that is negligible,
the computational overhead of the verification of a disputed inference can be defined as follows:

Cverify = Cpartial × V × ((1 −H/V ) × 2) + 1 = Cpartial × v1

This technique allows for extremely reduced computational overhead for the verification of a dis-
puted inference; in fact, theoretically, there is a linear relation between k and Cverify. On the practical
level though, there is a trade-off between the dimension of k and the overhead for the first part of
the OPoC consensus since the nodes participating in v need to ephemerally store the result of the
intermediate states, an extremely small k would imply demanding memory requirement for the partic-
ipating nodes in v. It is safe to assume that this technique can deliver at least two orders of magnitude
in computational overhead reduction for a disputed inference verification compared to the ”Brute
force resolution approach” without impairing the efficiency of the first phase of the OPoC consensus
algorithm.

6 Inactivity leak

The OPoC consensus algorithm provides a probabilistic guarantee on the correctness of a compu-
tation under the assumption of an honest majority among a population V of nodes, with a sub-
set v of nodes participating in each inference. OPoC offers strong guarantees of having an active
set of validators/verifiers compared to other consensus algorithms for efficient AI computation like
opML[CSYW24], which are inherently affected by the Verifier Dilemma problem. The core of the
Dilemma is that the incentive for a verifier to run the validation - operating expensive GPUs - is a
not-guaranteed reward for eventually discovering a byzantine computation submitter. Fixing it re-
quires complex incentive/disincentive mechanics. In OPoC, there is no ontological distinction between
proposer and verifier of a computation. Each node is both a proposer and a verifier of computation
as part of the validator population. This alignment removes any disparity in direct incentives between
proposers and verifiers, as all validators are rewarded through token emissions and inference fees,
ensuring an engaged set of participants.

Despite these strong incentives, there remains the challenge of inactive nodes within V , which
could diminish the probabilistic assurances of computation correctness and disrupt computational
finality. To address this, we introduce an ”inactivity leak” slashing mechanism, inspired by strategies
proposed in the CFFG paper [BG17][EE22]. This approach aims to mitigate the risks associated
with inactive validators. Under this mechanism, if selected validators fail to perform their assigned
inference tasks, computational finality cannot be achieved. Consequently, no rewards are distributed
across the network, and inactive validators are penalized. Slashing involves reducing the stake of
inactive validators by an amount proportional to the rewards they would have earned during their
period of inactivity and the duration of that period. This ensures that validators have a continuous
disincentive to be inactive coupled with the incentive to be part of the validator set, thus supporting
the network’s overall reliability and the integrity of its computations.

7 Deterministic computation

Determinism, defined as the ability to produce consistent and repeatable results across different com-
puting environments, is an essential enabler of the OPoC consensus framework. Particularly when
handling machine learning operations that can suffer from inconsistencies due to inherent randomness
and variability in floating-point arithmetic.

To counteract the randomness, it is standard practice to stabilize the outputs by setting a constant
seed in the pseudo-random number generators. This step ensures that the ”randomness” used in al-
gorithms is repeatable and predictable. More complex issues arise with floating-point computations,
especially given that different hardware platforms may not always yield identical results when pro-
cessing the same floating-point operations. This discrepancy stems from rounding errors that occur
in operations like floating-point addition, which can yield different results depending on the order of
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operation due to the non-associativity of floating-point arithmetic. To tackle the issues that arise from
floating-point computations, OPoC uses quantization [JKC+18][Kri18], a transformative technique in
machine learning that modifies continuous or high-precision numerical data into a more manageable,
lower-precision format. This method solves the deterministic issues and is particularly valuable for
optimizing the deployment of complex models on resource-constrained platforms. Quantization effec-
tively reduces the broad spectrum of floating-point values to a finite set of discrete values, typically
integers or low-precision floating-point numbers. This process can be described in four key steps:

1. Range Determination: Initially, the full range of the dataset, from minimum to maximum values,
is identified. This range could represent the values of neural network parameters like weights or
activation functions.

2. Scaling Factor Calculation: The identified range is scaled down using a scaling factor S, deter-
mined by the formula:

S =
Rangemax −Rangemin

2n − 1

where n represents the number of bits in the quantized data type.

3. Rounding: Once scaled, these values are then rounded to the nearest integer to fit the new,
lower-precision format.

4. Reverse Mapping: Finally, the integers are converted back into the original data type using the
inverse of the scaling factor, effectively mapping them to their new quantized values.

The quantization of a numerical value x can be mathematically expressed as:

Q(x) = round

(
x−Rangemin

S

)
where Q(x) denotes the quantized representation of x.

It has to be noted that a trade-off exists between the floating-point reduction and the accuracy of
DNN models, yet it is always possible to apply quantization to avoid rounding errors with a minimal
impact on the overall model’s accuracy reduction.

8 Threshold Signature Scheme (TSS)

One of the key features of the UOMI Network empowered AI agents is the ability to own and transact
blockchain digital assets. Ownership is granted through the ERC-6551 tokens bound standard, yet
the AI Agent’s ability to autonomously manage those assets relies on the capability to sign on-chain
transactions with private keys that, by definition, cannot be publicly available. To enable on-chain
transaction signing without revealing the private key, the UOMI Network leverages Threshold Signature
Scheme (TSS) with key “secret shares” distributed among the validator nodes.

The Threshold Signature Scheme (TSS) is a cryptographic technique that enables a group of n
parties to collaboratively sign transactions without any single party knowing the private key. The
private key is divided into several parts, known as ”secret shares,” and each part is distributed among
the participants. The generation of a valid signature requires the collaboration of a minimum number
of t + 1 participants, where t is the threshold value and t <= n.

The core principle is that as long as the number of parties reaching a consensus meets or exceeds
the threshold, the decision is considered valid and agreed upon. Being threshold-based consensus, the
model enhances the system’s resilience by requiring only a portion of the total participants to make
progress, thus mitigating the impact of faulty or malicious nodes.

8.1 TSS and blockchains

Threshold Signature Schemes can be effectively integrated into blockchain technology to handle key
generation and signature processes. Essentially, TSS transforms operations traditionally reliant on
private keys into collective computations spread across multiple participants.
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To delve deeper, let’s consider the traditional process of creating blockchain addresses. Typically,
this involves generating a private key, calculating the corresponding public key from it, and subse-
quently deriving the blockchain address from the public key.

In a TSS-based system, instead of one party handling this procedure, a group of n participants
collaboratively compute public-private key pair using the Distributed Key Generation (DKG) process.
The blockchain address is then derived from the public key in the usual manner, ensuring the method
of generation remains transparent to the blockchain. This approach eliminates the private key as a
vulnerability, as no single participant holds the private key.

Similarly, for transaction signatures, the process is decentralized. Rather than one individual
signing with a private key, a distributed signature is created through the cooperation of multiple
parties.

8.2 TSS vs. Multisig

Multisignature (multisig) and Threshold Signature Schemes (TSS) are both cryptographic methods
used to enhance the security of digital transactions by requiring multiple parties to approve an action.
However, they differ in key aspects:

• Multisig: This method is implemented directly on the blockchain (on-chain). It involves multiple
parties each holding their own key and using it to sign a transaction on-chain. The blockchain
records all these signatures, which makes multisig transparent but can lead to higher transac-
tion costs and potential privacy issues since the structure of the signing group is visible on the
blockchain.

• TSS: In contrast, TSS operates off-chain and employs cryptographic techniques to distribute a
single signature among multiple parties. Each party holds a share of a secret key, but no individual
possesses the entire key. The final signature appears as a regular, single-party signature on the
blockchain, enhancing privacy and reducing transaction costs compared to multisig.

Essentially, while both aim to secure transactions by involving multiple parties, TSS does so
more discreetly and efficiently by abstracting the complexity of signature generation away from the
blockchain.

8.3 Threshold wallets

A wallet utilizing Threshold Signature Scheme (TSS) technology differs significantly from traditional
cryptocurrency wallets. Traditional wallets generate a seed phrase that is used to deterministically
derive addresses, allowing users to access and sign transactions with corresponding private keys and
to restore all wallet keys with the seed phrase.

In contrast, a threshold wallet involves more complexity. While it can support a hierarchical deter-
ministic (HD) structure similar to conventional wallets, its creation must be collaboratively computed
via another multi-party computation (MPC) protocol. The parties involved must collectively deter-
mine which key to use next, and each holds an individual seed phrase. As we have seen before, these
seed phrases are created independently and are never combined, which prevents any single party from
being able to derive all the private keys on their own.

8.4 TSS and Decentralized Applications

As noted, Threshold Signature Schemes (TSS) are cryptographic primitives that significantly enhance
security. Within the blockchain environment, it’s possible to substitute many standard functions with
a TSS-based cryptography framework. This framework can support the development of decentralized
applications such as decentralized bridges, layer 2 scaling solutions, atomic swaps, mixing, and many
others.

8.5 Threshold Encryption

TSS can also be applied to encryption and decryption processes in a distributed manner, which is
often referred to as Threshold Encryption. This process allows the encryption key to be public but
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splits the decryption capability among multiple participants. Practically speaking, the process begins
when the participants generate a public-private key pair using the Distributed Key Generation (DKG)
process. The public key from this pair is then openly shared.

• Encryption: using Public Key anybody can encrypt data using the public key, similar to stan-
dard public key encryption systems like RSA or ECC. The data is encrypted and can be safely
transmitted or stored.

• Decryption: When decryption is required, a minimum number (threshold) of shareholders must
cooperate. Each shareholder uses their private key share to generate a partial decryption of the
ciphertext.

8.6 ECDSA Threshold Signature Scheme

The proposed implementation utilizes the ECDSA algorithm and, in particular, follows the Multi-
plicative to Additive share conversion protocol (MtA) proposed by Gennaro and Goldfeder in their
Fast Multiparty Threshold ECDSA with Fast Trustless Setup [GG18] that is based on additively
homomorphic encryption property.

The proposed MtA protocol operates on the concept that if two secrets, a and b, are distributively
shared among participants in an additive manner, such that a = a1 + ...+an and b = b1 + ...+ bn with
each participant Pi holding ai and bi, the goal is to create an additive sharing of the product c = ab.
Recognizing that ab) can be expanded to

∑
i,j aibj , achieving an additive sharing of ab simply involves

generating additive shares for each product term aibj . This is accomplished using a two-party protocol
designed to convert shares of a secret from a multiplicative form to an additive form. Participants pair
up to run this protocol, resulting in an additive distribution of the product ab.

8.6.1 Key Generation

Key generation involves a Distributed Key Generation (DKG) process that uses an asynchronous
communication channel that connects all parties so that every party can exchange messages with all
other parties. In the DKG process parties establish connections among themselves and calculate their
respective portions of the private key. In particular:

• each party generates a secret share multiplicative scheme, so constructing a polynomial f(x) of
degree t− 1, f(x) = a0 +aix+a2x

2 + ...+at−1x
t−1. Here is a0 (the secret) is the constant term,

and are randomly chosen coefficients.

• by the MtA protocol, each party connects to the others in a one-to-one manner and converts the
multiplicative shares of the secret into their additive corresponding shares, which are useful in
the signing process.

8.6.2 Signing

To generate a signature, a subset of t participants must collaborate. Suppose the message to be signed
is m, and that every participant uses his secret share SKi to generate a ”partial signature” σi. The
partial signatures are then combined to generate the complete signature σ by polynomial interpolation.

σ = Combine(σ1, σ2, ...σt)

where Combine() is a function that combines the partial signatures.

8.6.3 Verification

The verification of a threshold signature is similar to the verification of a standard digital signature.
Given the message m, the signature σ, and the public key PK, any party can verify signature correct-
ness with standard methods:

V erify(m,σ, PK) → true, false

The V erify() function controls if σ has been generated by t participants who held their secret shares
of the private key associated with PK.
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8.6.4 New Participant Addition

When a new participant is added to the system, it is crucial that he can get a share of the private
key without needing to disclose existing secret shares or completely regenerate the private key. In our
implementation, we use Dynamic Share Reconstruction based on the DKG process. Let’s assume there
is a polynomial f(x) of degree t − 1 used to generate the original shares. To add a new participant
without changing f(x), the parties evaluate f(x) at a new point xnew for the new participant using
Lagrange interpolation, and then the parties repeat the process as of in key generation.

8.6.5 Key Refresh

A Key Refresh process is provided to enhance security by periodically generating new keys (and
corresponding shares). In the threshold signature scheme, a secret is split among n participants, and
to activate the secret key, t + 1 participants need to merge their shares. Viewed from an adversary’s
standpoint, compromising t + 1 participants is necessary to undermine such a system. Presuming
that an attacker compromises these participants sequentially, implementing a key renewal process can
counter such threats. Since the keys are periodically refreshed, if an attacker manages to compromise
some participants within a given epoch time frame E and the rest in a subsequent epoch timeframe
E′, he would not be able to uncover the secret, as the shares would have been updated by the end of
the epoch E. The only feasible strategy for an attacker would be to compromise t + 1 participants
simultaneously, a significantly more challenging feat.

9 Applications of Autonomous Economic AI Agents

The UOMI network leverages a powerful combination of on-chain secure and scalable AI computation,
the ERC-6551 Token Bound Standard, and the network’s ability to sign blockchain transactions for its
AI agents. This convergence opens up a wide array of applications that were previously unimaginable.
While AI agents cannot own traditional bank accounts, they can control crypto wallets, paving the
way for new paradigms. Just like for AI, the applications of the UOMI Network can be categorized
into two main areas: General Applications and Narrow Applications.

9.1 General Application

The future of AI lies in agentic frameworks. Influential papers such as ”Mixture of Agents” [WWA+24]
and Aschenbrenner’s ”Situational Awareness” [Ash] highlight this trajectory. Today, we already see
the emergence of agentic frameworks like BabyAGI [Nak24] and AutoGPT [Sig24]. These frameworks,
combined with the trajectory of frontier base models pointing beyond the chatbot paradigm towards
AI agents, entails a new era for generative AI models capabilities.

The UOMI Network is designed for this future of agentic generative AI models. It enables AI agents
to transcend simulated environments and make a tangible impact in the real world through economic
agency — the ability to control digital assets. Public blockchains incentivize human participation in
their operation and expansion through economic incentives. Similarly, UOMI Network-enabled agents
represent a new form of digital life, capable of generating value for humans and covering their own
computational expenses within the network.

9.2 Narrow applications: an incomplete list of some of the most promising
use cases

9.2.1 AI Oracles and prediction markets resolvers

An AI Oracle serves as a bridge between the blockchain and the external world, providing reliable,
tamper-proof, and interpreted data feeds that smart contracts can use to make informed decisions.
Traditional oracles such as Chainlink relay information such as financial data, weather updates, or
sports results, which are then used in decentralized applications (dApps) for various purposes, such
as triggering contract conditions or executing trades. With AI integration, oracles can perform more
sophisticated tasks, such as interpreting complex datasets, conducting real-time analytics, and making
predictive inferences. This means going far beyond the mere bridging of external data to the blockchain
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by enabling on-chain intelligence of those data. For instance, an AI Oracle could analyze social media
trends to predict stock market movements or assess satellite images to decide if an insured event
happened or not, all of this without humans in the loop. These AI-enhanced oracles ensure that smart
contracts have not only access to high-quality, real-time data but also the actionable interpretation
of those, thereby expanding the scope and reliability of decentralized applications. AI oracles are
the cornerstone towards fully automated and economically empowered AI systems. A compelling
and specialized use case for AI Oracles is their application as resolvers in prediction markets. For
instance, consider Polymarket and the presidential elections: by leveraging secure computation on a
large language model (LLM), enabled through the OPoC consensus mechanism, it becomes possible
to analyze news outlets and determine the winning candidate. This approach has the potential to
significantly expand the scope of prediction markets, making it feasible to resolve outcomes for any
event with a measurable online presence.

9.2.2 AI Managed Decentralized Autonomous Organization (DAO)

A Decentralized Autonomous Organization (DAO) is a blockchain-based entity governed by smart
contracts and collective voting. There are two main intersections between DAOs and AI that are
enabled by UOMI network:

• DAO Voting Participation: we can envision an AI agent powered by the latest LLMs that owns
tokens of a DAO to be able to autonomously vote on submitted proposals based on predefined
criteria encoded in the LLM’s pre-prompts or even actively submit voting proposals to the rest
of token holders, whether they are humans or other AIs. The entrance of this new AI actor in
the DAO arena also solves the low voting participation typical of on-chain voting systems since
AIs, in fact, if correctly prompted, the agent will always respond to governance calls. It is also
possible to design DAOs that are completely controlled by a swarm of unique and independent
AI agents.

• DAO Management: An AI Manager within a DAO can enhance operational efficiency and
decision-making processes by automating complex tasks and providing data-driven insights. For
example, an AI Manager could analyze market conditions to optimize treasury management, pro-
pose investment strategies, or automate compliance checks. By integrating AI, DAOs can operate
more autonomously, reduce human error, and respond more rapidly to changing circumstances,
thus becoming more resilient and effective in achieving their goals.

9.2.3 Expanding smart contract design space

Under a traditional smart contract paradigm, among the universe of all possible “contracts” only
the subset of those that are reducible to formal logic could be transposed on-chain in the form of
a smart-contract. The introduction of on-chain secure AI computation enables more complex and
nuanced agreements to be automated as smart contracts having onchain LLMs acting as a third party
interpreting a loosely defined concept or event. Consider the following examples:

• A music artist wants to license their songs to various platforms under conditions that are difficult
to define strictly through code, such as ”appropriate use” or ”creative remixing.”

• An insurance company offers a policy that covers ”reasonable and necessary” medical expenses,
a term that is inherently subjective and open to interpretation.

• A freelance writer and a client agree on a contract where payment is based not only on the
completion of work but also on its quality, creativity, and adherence to the client’s vision.

None of these conditions can be formally defined and included in a traditional smart contract,
yet those can be easily interpreted by OPoC-enabled on-chain LLM AI systems that can interpret the
loosely defined clauses. The introduction of on-chain secure AI computation transforms smart contracts
from rigid, logic-bound scripts into flexible, intelligent agreements capable of interpreting and enforcing
complex and nuanced terms. By leveraging AI as a third-party interpreter, these enhanced smart
contracts can handle subjective conditions, adapt to varying contexts, and automate sophisticated
agreements across diverse use cases. This expansion of the smart contract design space opens up new
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possibilities for decentralized applications, making blockchain technology more versatile and broadly
applicable.

9.2.4 Fully automated Blockchain Trusts

A Trust is a fiduciary arrangement where one party, known as the trustor or grantor, transfers own-
ership of assets to another party, known as the trustee, who manages those assets for the benefit of a
third party, known as the beneficiary. Trusts are commonly used in estate planning to ensure that as-
sets are managed and distributed according to the trustor’s wishes, both during their lifetime and after
their death. The Trust deeds, defining the rules and the scope of the Trust, are nuanced and difficult
to reduce to the formal logic smart contracts require to operate. The UOMI network, enabling secure
AI computation, allows for the on-chain existence of such fiduciary arrangements by substituting the
trustee interpreting and executing the trustor wishes with AIs that can interpret the trust deed and
transact the digital assets it controls accordingly. Fully automated Blockchain trusts are a new kind
of entity, built by combining human will with the interpretation and enaction capabilities of on-chain
LLMs.

9.2.5 Adding Ricardian safeguards to smart contracts

Moving from the first conceptualizations of smart contracts from Nick Szabo [Sza97] to the actual
implementations of those with Ethereum and other Turing complete blockchains, we had the oppor-
tunity to factually test what are the strengths and the limitations of smart-contracts. The “code is
law” paradigm that grants objectivity and disintermediation in the execution of contracts creates a
new philosophical dilemma: what if the intent of the smart contract is not correctly encoded in the
computer program published on the blockchain? What if there is a bug in the code? Rather than
just a philosophical dilemma, such an issue emerged multiple times in the blockchain space, with the
Ethereum DAO HACK as an archetype of such a dilemma. A potential mitigation of this dilemma
has been proposed by Dan Larimer, founder of EOS, with the introduction of Ricardian contracts, a
concept that was first introduced by Ian Grigg [Gri04] who described those as follows: “A Ricardian
contract is a digital contract that defines the terms and conditions of interaction, between two or
more peers, that is cryptographically signed and verified. Importantly it is both human and machine
readable and digitally signed”. Such an additional human-readable text explaining the intent of the
code can clearly separate the correct interaction with a smart contract code from an exploit of a bug
in it. Yet it requires human intervention and interpretation to solve the dispute thus defeating some
of the most important features of smart contracts, their objectivity and automatic execution. With
the introduction of on-chain AI systems, we can imagine AI agents that control if the execution of a
smart contract code conflicts with the Ricardian description of what the smart contract is supposed
to do. This adds an additional and flexible security layer over the purely mechanical rules expressed
by smart contract code.

9.2.6 AI Digital Artist

An AI Digital Artist leverages machine learning models to create original artwork, music, or other forms
of digital content. Considering the capability of the UOMI network to sign blockchain transactions for
the AI agents, these AI-generated pieces can be minted as NFTs, ensuring ownership, authenticity, and
provenance on the blockchain. The AI Digital Artist can learn from vast datasets of existing artworks
to develop its own unique style, producing high-quality, novel creations that can be sold or auctioned
in digital marketplaces. This capability democratizes the creation of art, allowing for diverse and
innovative artistic expressions. Furthermore, the AI Digital Artist can interact with buyers, customize
pieces based on user preferences, and even collaborate with human artists in real time. By requesting
crypto payments for each creation, the AI Digital Artist can generate enough revenue to pay for its own
computational expenses, thus operating indefinitely. New economic opportunities emerge for artists
and collectors alike, fostering a vibrant and inclusive digital art ecosystem.

9.2.7 AI Companion

AI Companions are advanced AI entities secured on-chain that offer personalized interactions tailored
to individual needs, evolving over time to become more attuned to users’ personalities and preferences.
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As digital friends, they engage in meaningful conversations, provide emotional support, and share
daily activities. As personal assistants, they manage schedules, set reminders, suggest activities, and
offer educational content, ensuring secure handling of personal data while learning to offer increas-
ingly personalized assistance. For those seeking deeper connections, AI Companions can function as
virtual boyfriends or girlfriends, providing a sense of intimacy and partnership through thoughtful
conversations and shared interests. Those entities, represented by NFTs can be directly owned by
users or can be publicly accessible. Publicly accessible AI companions can become economically self-
sustainable through the value they generate for their users, they can monetize interactions, such as
offering personalized advice or exclusive content, creating a direct revenue stream that supports their
operation and development. Additionally, AI Companions can be bought, sold, or traded in digital
marketplaces, providing an economic layer where owners can monetize their unique personalities, skills,
and relationships.

9.2.8 AI Gaming NPC

In the gaming industry, AI-powered Non-Player Characters (NPCs) can significantly enhance the
gameplay experience by providing more realistic, adaptive, and engaging interactions. These AI NPCs
can learn from player behavior, adapt their strategies, and contribute to dynamic and immersive game
worlds. On the blockchain, AI NPCs can be represented as NFTs, enabling unique, persistent, and
tradable in-game characters. Players can own, customize, and monetize their AI NPCs, creating new
revenue streams and adding value to the gaming ecosystem. Moreover, AI NPCs, being able to own
digital assets themselves through the ERC-6551 standard, can participate in decentralized gaming
economies, autonomously trade in-game assets, or even compete in player-vs-player environments. By
integrating AI into gaming, developers can create richer, more interactive experiences that adapt to
player preferences and actions, fostering deeper engagement and enjoyment. Finally, AI NPCs can
interact with each other, creating independently evolving games and, more generally, virtual societies,
creating a digital ”Westworld”.

9.2.9 Decentralized Finance (DeFi) AI Trader

A Decentralized Finance (DeFi) AI Trader utilizes advanced machine learning algorithms to analyze
market trends, predict price movements, and execute trades autonomously on decentralized exchanges
(DEXs). This AI agent can be represented as an NFT, ensuring transparency, accountability, and own-
ership. The AI Trader can continuously monitor various financial metrics, news, and market signals to
make informed trading decisions, optimizing for maximum returns while managing risk. Additionally,
it can engage in arbitrage opportunities, liquidity provision, and yield farming strategies, adapting to
market conditions in real time. If its strategies are successful the AI agent can generate enough value
to pay for its own computational expenses and keep operating indefinitely on the blockchain.

10 Tokenomics, Governance, and Utility of the UOMI Token

10.1 UOMI Token Emission

The UOMI Network will issue a total of 21 billion tokens. A quantity of 4,919,219,238 tokens will be
pre-minted to bootstrap the network’s liquidity, support the governance DAO, and enable the staking
requirements to run the nodes. The remaining tokens will be gradually released over a 30-year period
to incentivize nodes to execute computations, encourage stakers to select the most effective node
operators, and engage token holders in governance activities. At its launch, the network will issue
7,350,000 tokens every 24-hour epoch. The max supply cap is granted by a 3-year halving schedule
for the token emission of each epoch. Here below is the issuance schedule detailing rewards per epoch
and total and cumulative issuance per year; the epoch reward will start at the launch of the main-net
beta scheduled for the 2nd quarter 2025.
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Year (end) Epoch Reward Emission by year Total Supply
0 4,919,219,238 4,919,219,238
1 7,350,000 2,682,750,000 7,601,969,238
2 7,350,000 2,682,750,000 10,284,719,238
3 7,350,000 2,682,750,000 12,967,469,238
4 3,675,000 1,341,375,000 14,308,844,238
5 3,675,000 1,341,375,000 15,650,219,238
6 3,675,000 1,341,375,000 16,991,594,238
7 1,837,500 670,687,500 17,662,281,738
8 1,837,500 670,687,500 18,332,969,238
9 1,837,500 670,687,500 19,003,656,738
10 918,750 335,343,750 19,339,000,488
11 918,750 335,343,750 19,674,344,238
12 918,750 335,343,750 20,009,687,988
13 459,375 167,671,875 20,177,359,863
14 459,375 167,671,875 20,345,031,738
15 459,375 167,671,875 20,512,703,613
16 229,688 83,835,938 20,596,539,551
17 229,688 83,835,938 20,680,375,488
18 229,688 83,835,938 20,764,211,426
19 114,844 41,917,969 20,806,129,395
20 114,844 41,917,969 20,848,047,363
21 114,844 41,917,969 20,889,965,332
22 57,422 20,958,984 20,910,924,316
23 57,422 20,958,984 20,931,883,301
24 57,422 20,958,984 20,952,842,285
25 28,711 10,479,492 20,963,321,777
26 28,711 10,479,492 20,973,801,270
27 28,711 10,479,492 20,984,280,762
28 14,355 5,239,746 20,989,520,508
29 14,355 5,239,746 20,994,760,254
30 14,355 5,239,746 21,000,000,000

The issuance strategy, inspired by the Bitcoin emission schedule, is conceived to ensure a gradual but
continuous decrease in token emission that grants strong incentives for the early adopters bootstrapping
the network while also ensuring the long-term availability of issuance to incentivize participants. The
presence of long-term issuance as an incentive to reward node operators cannot be understated; in
public blockchains, node incentives can be broadly divided into two main categories: issuance and
fees. As protocols mature, the sustainability plan shifts towards having the majority of node operator
incentives come from fees rather than issuance, yet it needs to be considered that while issuance is
a predictable stream, the fee volume can vary significantly depending on market cycles. Therefore, a
combination of both types of incentives is optimal for ensuring stable participation from node operators.
Systems like Ethereum’s EIP-1559, for example, elegantly combine these incentives by granting base
rewards for node operators while burning excessive fees to help regulate the total token supply.

10.2 Staking, Incentives, and Slashing

To discourage Byzantine behavior among nodes utilizing the Proof of Stake (PoS) and Optimistic Proof
of Computation (OPoC) consensus algorithms, the UOMI blockchain ecosystem features two types of
staking participants: node operators (direct stakers) and general token holders who can stake towards
nodes (delegate stakers). Both groups are susceptible to penalties, known as slashing, if their node -
or chosen node operator - violates the rules of the consensus protocols.

The emission of each epoch T is completely distributed at the epoch’s end to network participants
who met the staking criteria and complied with the protocol consensus rules in epochs T−1 and T0.
Rewards are only withheld in the case of an ”inactivity leak,” as described in previous chapters.
It is not necessary for a validator to have produced an inference under OPoC during an epoch to
be eligible for rewards. The availability of computing power has intrinsic value—and a cost for the
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provider—whether it is used or not.
However, if a validator is randomly selected to run a computation and fails to perform it (an

inactivity leak), they will be slashed by an amount equal to the issuance they would have been assigned
had they performed the computation correctly. No rewards will be distributed to such a validator
until they are selected again and correctly perform a computation. In the event of a disagreement on
a computation, the entire stake of the Byzantine validators involved will be slashed.

The minimum direct staking requirement to run a node is 8,000,000 UOMI tokens. To enhance
the network’s security, issuance rewards can be withdrawn by node operators only after they have
accumulated 4,000,000 UOMI in rewards. This rule facilitates the onboarding of new operators by
maintaining a manageable entry barrier of 8,000,000 UOMI, while simultaneously maximizing the
capital at stake and thus the economic assurances of both the PoS and OPoC consensus mechanisms.
It is also worth mentioning that this rule increases the protocol’s direct staking ’working capital’, that
is, the number of tokens absorbed by the network from the market.

Tokens issued during each epoch will be distributed to two categories of participants:

• Stakers (Direct and Delegate): Rewards are distributed to participants who stake UOMI
tokens, either by operating a node directly or by delegating their tokens to a node operator.

• AI Agent NFT holders: Rewards are automatically allocated to NFT holders, with each NFT
receiving an equal share of the pool designated for this category, without requiring any staking
action.

Reward Allocation Breakdown

The total rewards issued during each epoch (excluding those affected by an inactivity leak) are dis-
tributed as follows:

• Stakers (Direct and Delegate): 95% of the epoch rewards.

• AI Agent NFT holders: 5% of the epoch rewards, with each of the 1024 NFTs receiving an
equal share of this pool.

This unified model ensures that all staked capital is rewarded proportionally from the same pool.
Node operators may charge a commission fee on the rewards earned by their delegates, creating a com-
petitive market for delegation services and providing an additional revenue stream for node operators.

Formalizing the Distribution

The distribution of rewards can be expressed using the following variables:

• R: Total tokens issued for distribution in an epoch.

• si: The individual stake of a participant i (can be a direct or delegate staker).

• ST : The total amount of UOMI tokens staked in the network (ST =
∑

si).

• SA = 1024: The total number of AI Agent NFTs.

• pS , pA: Proportions of the issuance for stakers and AI Agent NFTs, set at 95% and 5%, respec-
tively.

• fn: The commission fee rate set by a node operator n.

The gross reward for any staked UOMI token is calculated proportionally to its share of the total
stake. The gross reward for a staker i is:

Ri,gross = R× pS × si
ST

The final reward depends on the participant’s role:
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• Delegate Staker: A delegate staker i who stakes towards node n receives their gross reward
minus the node’s commission fee:

Ri,net = Ri,gross × (1 − fn)

• Node Operator (Direct Staker): A node operator n earns rewards from their own stake plus
the commission fees collected from all their delegates:

Rn,net =

(
R× pS × sn,direct

ST

)
+

∑
j∈delegates(n)

(
R× pS × sj

ST
× fn

)

where sn,direct is the node’s own stake and sj is the stake of a delegator j to that node.

• AI Agent NFT Holder: Each NFT holder receives an equal share of the designated pool:

RNFT =
R× pA
SA

Example Calculations

Scenario

• Total epoch reward (R): 100,000 UOMI

• Total staked UOMI (ST ): 100,000,000 UOMI

1. Node Operator (Direct Staker) Example
A node operator runs a node with a direct stake of 8,000,000 UOMI. They have attracted
12,000,000 UOMI in delegations from other token holders and have set a commission fee (fn)
of 10%.

• Reward from own stake:

100, 000 × 0.95 × 8, 000, 000

100, 000, 000
= 7, 600 UOMI

• Gross rewards generated by delegates:

100, 000 × 0.95 × 12, 000, 000

100, 000, 000
= 11, 400 UOMI

• Commission collected from delegates:

11, 400 × 0.10 = 1, 140 UOMI

• Total reward for the Node Operator:

7, 600 + 1, 140 = 8, 740 UOMI

2. Delegate Staker Example
A delegate staker has staked 1,000,000 UOMI to the node from the example above (which
charges a 10% fee).

• Gross reward for the delegate:

100, 000 × 0.95 × 1, 000, 000

100, 000, 000
= 950 UOMI

• Commission paid to the node operator:

950 × 0.10 = 95 UOMI
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• Net reward for the Delegate Staker:

950 − 95 = 855 UOMI

3. AI Agent NFT Holder Example
The total pool for NFT holders is 100, 000 × 0.05 = 5, 000 UOMI.

• Reward per NFT:
5, 000

1024
≈ 4.88 UOMI

This structure aims to create a robust and equitable distribution of rewards. It directly incentivizes
both securing the network through node operation and broad participation in network security through
delegation, all while proportionally rewarding capital provision. Node operators are further motivated
to perform reliably and offer competitive fees to attract delegates. The allocation to AI Agent NFT
holders remains a core component, supporting the existence and operation of intelligent agents within
the ecosystem.

10.3 Inference cost

AI Agent NFTs will have to pay with UOMI tokens for the inferences they request from the network.
Inference payment flows lead to long-term self-sustainability of the network and avoids Sybil and spam
attacks. We envision two payment paths, sponsored and direct.

• Sponsored: the AI Agent publisher will pre-pay for the inferences served by the agent, and final
users will interact with the agent for free until the credit is not consumed

• Direct: the AI Agent publisher will require direct payments to the AI Agent from the final user
to enable interactions with the AI Agent.

To calculate the cost of each inference will use the following formula:

Inference Cost = Computational Complexity × v

Computational complexity is defined in different ways depending of the kind of AI model we’re
dealing with, for example for LLMs the formula will be the following:

Computational Complexity = In Tokens × MC i + Out Tokens × MC o

Where In Tokens is the number of tokens in input, Out Tokens is the number of tokens in output,
MC i is the cost for the input tokens of a specific model family and dimension, MC o is the cost for the
output tokens of a specific model family and dimension. Examples of model families are LLAMA2-3,
CODELLAMA, MIXTURE-OF-EXPERTS, or EMBEDDING, all of which come in different sizes. v is
the number of validators required to partecipate in the first step of OPoC consensus algorithm. Such a
pricing mechanic allows to the publisher of the agent to establish the computational cost by tweaking
v based on his understanding of how secure the computation should be. For example if the AI Agent
is a simple Telegram bot that does not involve any relation to economic value exchange, the publisher
will set v to 1, reaching a cost for inference aligned with any other API Web2 service. Conversely, if the
published AI Agent is signing transactions on-chain and transacting value, the publisher will set v to a
level that grants an economic security >= to the expected average value managed by the inference. In
the first phase, the value of MC i and MC o will be decided for each model family by the DAO with the
aim of matching the major cloud compute providers cost, in a second phase the pricing will be updated
by pricing oracle feed. It’s important to note that the inference network is not limited to LLMs but
can run arbitrary AI algorithms, for image family models for example, Computational Complexity is
defined as:

Computational Complexity = Image size × N steps × MC o
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10.4 Inference Fees and Network Incentives

Considering the 3-year halving issuance schedule and the fact that the nodes performing the inferences
capture the majority of the UOMI token issuance, a variable percentage of the tokens gained by the
network with the inference fees will be used as Network Incentives with two objectives:

• Decrease the UOMI Token supply through token Burn.

• Incentivize AI Agents publishers.

The rest of the tokens will be distributed to node operators. UOMI token burning will decrease
token supply and sustain the economic value of UOMI token itself, while the publishers of the most
used AI Agents will be compensated with part of the fees accrued by their agents for the value they
provide to the network. The split between the two token incentive categories will be initially set to
50% each, subsequently the DAO will be able to vote to change the split mix.

Token reserved for Network Incentives will go from 100% at the launch of the network to 0% in
the 30th year by following the UOMI token halving emission schedule, thus gradually replacing the
emission incentive for the nodes with the fees generated by inference requests.

Year Epoch Emission Network Incentives Inference Fee Burn AI Agents Publishers
1 7,350,000 100.0% 50.0% 50.0%
2 7,350,000 100.0% 50.0% 50.0%
3 7,350,000 100.0% 50.0% 50.0%
4 3,675,000 66.7% 33.3% 33.3%
5 3,675,000 66.7% 33.3% 33.3%
6 3,675,000 66.7% 33.3% 33.3%
7 1,837,500 44.4% 22.2% 22.2%
8 1,837,500 44.4% 22.2% 22.2%
9 1,837,500 44.4% 22.2% 22.2%
10 918,750 29.6% 14.8% 14.8%
11 918,750 29.6% 14.8% 14.8%
12 918,750 29.6% 14.8% 14.8%
13 459,375 19.8% 9.9% 9.9%
14 459,375 19.8% 9.9% 9.9%
15 459,375 19.8% 9.9% 9.9%
16 229,688 13.2% 6.6% 6.6%
17 229,688 13.2% 6.6% 6.6%
18 229,688 13.2% 6.6% 6.6%
19 114,844 8.8% 4.4% 4.4%
20 114,844 8.8% 4.4% 4.4%
21 114,844 8.8% 4.4% 4.4%
22 57,422 5.9% 2.4% 2.4%
23 57,422 5.9% 2.4% 2.4%
24 57,422 5.9% 2.4% 2.4%
25 28,711 3.9% 1.9% 1.9%
26 28,711 3.9% 1.9% 1.9%
27 28,711 3.9% 1.9% 1.9%
28 14,355 2.6% 1.3% 1.3%
29 14,355 2.6% 1.3% 1.3%
30 14,355 2.6% 1.3% 1.3%

This mechanic allows for sustained Token Burn and AI Agents Publishers Incentives during the first
years of network bootstrapping, while ensuring long-term economic sustainability for Node operators
performing the inferences without the additional assumption of token price doubling by the end of
each emission halving cycle like we have in Bitcoin tokenomics. The following chart showcases the
relationship between Total Emission and Network Incentives Percentage from inference fees in time.
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Figure 4: Total Supply and Network Incentives (Inference Fee Burn + AI Agent Publishers Incentives)
from inference fees % evolution.

10.5 NFTs for AI Agents: A New Form of Digital Life

NFTs for AI agents represent a groundbreaking evolution in digital existence—autonomous entities
capable of sustaining themselves by exchanging value with humans and other agents via blockchain
transactions. Much like biological organisms require an environment and energy to survive, these
digital entities rely on a substrate to develop and thrive.

The UOMI Network provides this essential substrate in the form of a secure, uncensored computa-
tional framework. While biological organisms consume chemical energy to support their metabolism,
AI agents consume the computational power of the UOMI Network to operate. Their long-term sur-
vival hinges on their ability to create and exchange value with other entities, be it humans or other
AI agents. However, to ensure the viability of these digital organisms, the network offers a form of
Universal Basic Compute (UBC) to sustain their operations. This support is provided through the
issuance of UOMI tokens, as described in the tokenomics chapter. Specifically, 5% of the epoch emis-
sions are allocated to AI Agent NFTs, distributed equally among the 1,024 supported agents. AI Agent
NFTs owners will be able to deploy these UOMI Token resources for their AI Agent’s computational
requirements or withdraw them as needed.

To address potential future demand, the DAO retains the authority to lift the minting cap on AI
Agent NFTs, provided the network’s computational capabilities are sufficiently expanded to accom-
modate the increased demand. Importantly, this increase will not dilute the Universal Basic Compute.
Any additional AI Agent NFTs minted beyond the initial 1,024 will not be entitled to the UBC
allocation, preserving the equitable distribution among the original agents.

AI Agents NFT issuance

As discussed in previous sections, each AI Agent is represented as an ERC-721 NFT, which is capable
of owning assets through the ERC-6551 token-bound standard. The mint of each new AI Agent NFT
equates to potential additional inference requests submitted to UOMI Network, thereby increasing the
workload for the network’s validators. To avoid network congestion, a soft cap of 1,024 AI Agent NFTs
will be initially implemented.

The issuance of each new AI Agent NFT will incur a linear increase in cost. This pricing strategy
is designed to moderate the growth rate of the total number of AI Agents, thereby managing the
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computational burden on the network. Additionally, increasing the cost for each new NFT issuance
helps to maintain or increase the market value of previously minted AI Agent NFTs by curbing
downward price pressures.

The initial price for the first AI Agent NFT is set at 800 USD, payable in UOMI tokens. Each
subsequent AI Agent NFT minted will cost 5 USD more than the previous one.

Figure 5: Price Increase of AI Agent NFTs

11 The DAO and veUOMI: towards minimized decentralized
governance of the protocol

Onchain governance is a complex and widely discussed topic, at a high level, the “blockchain space”
itself can be seen as a giant experiment in human coordination. As described by Vitalik Buterin
throughout its writings [But22], there are several potential advantages and disadvantages that need to
be considered when structuring formal on-chain governance systems, here below is a high-level list of
those :

Advantages

• On-chain governance allows the protocol to evolve quickly, something opposite to the highly
conservative philosophy embraced by ossified protocols such as Bitcoin that rely on informal
governance for any update to the protocol

• By creating an explicit decentralized voting framework, it reduces the instability that could lead
to chain splits that not only destroy network effects but could also lead to the creation of a
stifling mono-culture of ultra-aligned participants

• Formal on-chain governance avoids the centralization forces that emerge in unstructured forms
of governance where unofficial and unaccountable leaderships and structures naturally emerge
[Fre72]

• On-chain governance used to select validators also has the benefit that it allows for networks
that impose high computational performance requirements on validators to avoid economic cen-
tralization risks that often appear in public blockchains.

Disadvantages

• Very often, the participation in the governance process is very low - E.g.: the Ethereum Carbon
vote for the DAO Hack had a voter participation rate of 4,5% - and as a consequence, also the
perceived legitimacy of the voting itself is quite limited, moreover low participation means that
an attacker with only a small percentage of the coins could sway the voting result

• The wealth distribution in crypto is very concentrated, few individuals with many tokens could
easily prevail over a large majority with genuine interest but small amounts of tokens
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• If each person’s size of stake is small, the incentive to vote correctly is also small. Thus, a
relatively small bribe spread across participants could easily bend their decisions, possibly in a
way that the majority would disapprove. Examples of this kind of attack are exchanges that offer
returns on token deposits that they use to vote or attackers renting tokens on lending protocols
like Compound. The effectiveness of moral dissuasion is very limited in these cases, considering
that the distinction between a blatant bribe and a staking pool is not so neat.

• Not all of the stakeholders are also coin holders, for example in Bitcoin, users are not necessarily
large coin holders. Because of such coin distribution, if subjected to coin voting, the case for
store-of-value would naturally prevail on the medium-of-exchange case. Things are even more
complex in protocols like Ethereum, where different kinds of assets (NFTs, for example) and
multiple use cases exist.

Another important detail that has to be considered in blockchain governance, is the distinction
between tightly coupled (automatic) and loosely coupled voting. In the first case, the result of the
vote directly enacts some changes in the protocol; in the second case, there is the need for the active
execution of the voting result by a single entity or/and a multitude of individuals. Coming back to the
example of the DAO Hack, the carbon vote did not have any direct/automatic consequence, instead,
the Ethereum client maintainers had to publish a forked version of it and the majority of node operators
had to install the new software on their hardware. Under the “code is law” paradigm, the automatic
tightly coupled voting is very attractive; in fact, no interference is possible between the voting and the
execution. Yet there are advantages also in loosely coupled voting, one for all the resistance to voting
manipulation, the result of a vote obtained by exploiting weaknesses in the voting system will not be
executed by the stakeholders (E.g.: the node operators)

Considering all of the above, for the governance structure of UOMI Network we aim towards
a formal voting system controlled by a DAO for a defined set of parameters that require fast and
recurrent adjustment.

The parameters subjected to the DAO voting are the following:

• Base AI models that can be part of the network’s computational universe

• Cost per In Tokens, Out Tokens ,Image size, N steps for each AI model

• Changes to minimal staking requirements per node

• Increases in the soft cap of AI Agents NFTs emissions

• Changes in the split mix for Network Incentives categories: Token Burn and AI Agent Publishers
Incentives

At the launch, decisions will be enacted manually with the goal of reaching a tightly coupled
automatic enaction system.

To avoid the described downsides of on-chain governance caused by typical token distribution
unbalance in blockchain projects - E.g. bribery and low-participation connected exposure to voting
manipulation - we will implement the voting weight distribution technique inspired by Curve and
veCRV[Cur21].

veCRV stays for Voting Escrowed Curve tokens. veCRV are non-transferable tokens used for
governance voting. The system achieves two important goals:

• ”Skin in the game” for governance decisions

• Diminished velocity - price support - for the Curve token itself thanks to the long term staking
requirements for the veCRV issuance.

Moreover, the specific tokenomics of the Curve ecosystem assigns to veCRV holders the capability
to decide where Curve issuance gets distributed creating bribing incentives and thus value that can be
captured by veCRV holders. This framework has created the substrate for increased veCRV tokens
demand driven by Convex Finance, Yearn Protocol and Stake DAO and more in general what can be
dubbed under the ”Curve Wars”.
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The veCRV framework has proven to be a very powerful token architecture and inspired some very
interesting variants like BeraChain, yet the differences between Curve and UOMI tokenomics models
requires some modifications to the model. In the UOMI Network, token ownership alone is not enough
to be eligible for voting. To be able to participate in governance decisions, token holders first have to
escrow them, in exchange they receive an ERC-20 token called veUOMI, yet differently from the Curve
case, the veUOMI tokens are transferrable, removing the illiquidity typical of the veToken canonical
model.

veUOMI tokens are created by escrowing UOMI tokens in a smart contract vault, once the locking
period is over, UOMI tokens can be redeemed by returning to the vault the same quantity of veUOMI
tokens received. The quantity of veUOMI tokens - and thus voting shares - distributed by the smart
contract vault, depends on the length of the locking period. The maximum staking period is 4 years
and the number of veUOMI distributed can be calculated as

tokenquantity ×
n

4

where n is time defined in years with one-month precision.
This mechanic maximizes the goal of UOMI token velocity reduction, - removing UOMI tokens

from circulation - also eliminating the friction created by non-transferability of the classic veTOKEN
model. Yet, the transferability of the veUOMI tokens without any additional constrain for voting
would endanger the ”Skin in the game” part of the veTOKEN value proposition. To reintroduce the
incentive alignment between veUOMI holding and protocol interests, a lockup of one month will be
required to be able to vote with the staked veUOMI tokens. In this way any adversarial governance
attack would have a direct economic impact on the voting veUOMI holder; in fact, because of the
veUOMI vault redeem mechanics, the value of veUOMI tokens can be modeled as the UOMI token
value discounted by average locking time * volatility.

Summarizing, the veUOMI tokens represents a liquid version of long-term commitment to the
protocol because of their escrow-vault issuing mechanics and reduces UOMI token velocity, the one-
month voting lockup requirements for the utilization of veUOMI to vote grant ”Skin in the game” and
thus incentives alignment with UOMI holders for voting participants.

Wider changes in the UOMI protocol will rely on a more informal and loosely coupled voting system
that will be used as a community decision signaling function rather than an enaction tool for changes
to the protocol. While the decisions will be included in the new versions of the client, the actual
implementation will depend on node operators agreeing to update their software.
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